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Summary

Seasonal influenza infects between 10 and 50 million people in the United States every year. 

Accurate forecasts of influenza and influenza-like illness (ILI) have been named by the CDC 

as an important tool to fight the damaging effects of these epidemics. Multi-model ensembles 

make accurate forecasts of seasonal influenza, but current operational ensemble forecasts are 

static: they require an abundance of past ILI data and assign fixed weights to component models 

at the beginning of a season, but do not update weights as new data on component model 

performance is collected. We propose an adaptive ensemble that (i) does not initially need data 

to combine forecasts and (ii) finds optimal weights which are updated week-by-week throughout 

the influenza season. We take a regularized likelihood approach and investigate this regularizer’s 

ability to impact adaptive ensemble performance. After finding an optimal regularization value, 

we compare our adaptive ensemble to an equal-weighted and static ensemble. Applied to forecasts 

of short-term ILI incidence at the regional and national level, our adaptive model outperforms an 

equal-weighted ensemble and has similar performance to the static ensemble using only a fraction 

of the data available to the static ensemble. Needing no data at the beginning of an epidemic, an 

adaptive ensemble can quickly train and forecast an outbreak, providing a practical tool to public 

health officials looking for a forecast to conform to unique features of a specific season.
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1 | INTRODUCTION

Every year seasonal influenza costs hospitals time and resources and causes significant 

loss of life, especially among patients with cardiac disease, previous respiratory illness or 

allergies, children and the elderly1,2,3,4. During the season’s peak incidence hospitals admit 

patients beyond capacity, and in severe cases, for greater lengths of stay that postpone lower 

priority but still important surgeries5,6,7. The total economic burden of influenza outbreaks 

(including medical costs, lost earnings, and loss of life) in the US alone are estimated to 

exceed $85 billion annually7.
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Accurate forecasts of influenza can help with public health response and mitigate the 

impact of an outbreak. Public health officials at the national, regional, and state level 

benefit from the advance warning forecasts can provide by preparing hospitals for increased 

disease burden8, shifting vaccines to places in need9, and alerting the public10. Forecasts 

of the intensity, timing, and overall impact of influenza are currently used to help guide 

targeted prevention and treatment messages to the public, and used to inform public health 

officials11,12. There are many examples, not just for influenza, where forecasting efforts 

have improved situational awarness for public health officials13,14,15. Recognizing the 

value of accurate forecasting, the US Centers for Disease Control and Prevention (CDC) 

have organized forecasting challenges around seasonal influenza outbreaks11,16,17. These 

challenges focus on generating weekly forecasts of influenza-like illness (ILI) rates at the 

national and regional level in the US. ILI is a syndromic classification, defined as a fever 

plus an additional symptom such as a cough or sore throat. Public health officials regard ILI 

surveillance data as an important indicator of the trends and severity of a given influenza 

season18.

The CDC influenza forecasting challenges, called FluSight, have spurred methodological 

development in the area of influenza forecasting and infectious disease forecasting more 

broadly. This effort has led multiple research groups to develop models trained on historical 

ILI data to forecast future incidence across the US. These models include statistical and 

mechanistic models, among other approaches 19,20,21,22.

Decision makers often request a single unified forecast and several modeling groups 

have developed multi-model ensemble forecasts of influenza. These models synthesize 

predictions from a set of individual component models and have shown better predictive 

ability compared to any single model23,24,25.

Multi-model ensembles aggregate diverse component model predictions into a final ‘meta-

prediction’ that is often, but not always, more robust than any single component model26,27. 

This robustness comes from the ensemble’s mixture of component models. By combining 

different types of models, the ensemble is freed from having to make a single set 

of assumptions about the data26,27. In contrast to ensemble modeling approaches like 

bagging28,29 and boosting30,29 which create a library of similar component models, multi-

model ensembles combine distinct component models together, possibly models designed 

and implemented in completely different modeling paradigms. Applications include weather 
31, economics32, energy production33, education34, and infectious disease25.

The multi-model ensembles addressed in this work are related to Bayesian Model Averaging 

(BMA)35,36,37,38. The fundamental difference between multi-model ensembles and BMA 

is the assumed data-generating process. BMA assumes a single model from an ensemble 

generated the entire data stream, and weights are assigned to models proportional to the 

probability they generated the entire observed data stream35. Multi-model ensembles assume 

each observation was generated by a convex combination of predictive distributions from the 

ensemble39,40,41. No one model generated all the data.
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This work builds on an existing ensemble implementation25 by developing a new method for 

combining component models that relies on recently observed in-season data to adaptively 

estimate a convex combination of models, sometimes referred to as a “linear pool”. Though 

past work has studied methods for training ensembles from a fixed data set42,43,44 and 

adapting ensemble weights to streaming data45,46,47, a unique and new challenge in our 

setting is to assess component model performance over the course of a season from factors 

such as variability in component model performance over the course of a season or the 

reliance on noisy, revision-prone observations like weekly ILI surveillance data. Component 

model performance has been shown to change based on the target that is predicted, when 

predictions are made over the course of the influenza season, and across different seasons48. 

Recent ILI observations, because they come from a real-time public health surveillance 

system, are subject to revisions, which are occasionally substantial and can negatively 

impact forecast accuracy49,48. Like past work in ensemble forecasting, this work combines 

a fixed set of probabilistic forecasting models provided by different forecasting teams48 and 

does not presume to have the capability to refit component model parameters.

To protect the adaptive multi-model ensemble framework from relying too heavily on recent, 

revision-prone ILI data and on past component model performance that is not necessarily 

correlated with future model performance, we developed a Bayesian model combination 

algorithm that uses a prior to regularize ensemble weights. Previous results in this field 

show equally-weighted ensembles often perform well17,25, and to align with these results, 

we chose a uniform Dirichlet prior that shrinks model weights towards equal. Our prior 

is also time dependent. Unlike a typical model where the prior becomes less influential 

with increasing data, our prior exerts a constant influence on the final model weights. 

Our model never allows model weights to depend only on recent model performance and 

revision-prone data. We show our method can be implemented using a variational inference 

algorithm (devi-MM), and demonstrate that an existing expectation-maximization approach 

to ensemble weight estimation25 is a special case.

We compared ensembles that assign equal weights to models (EW) and those with 

possibly unequal but static and unchanging weights throughout a season (static), against 

our adaptive ensemble (adaptive) which updated component model weights every week. 

Static ensembles were trained on all cumulative forecasting data before the beginning of 

each season and were unable to modify their model weights in-season. In contrast, adaptive 

ensembles were only trained on within-season data—starting the season with no training 

data—but could modify their weights over time as each additional week of ILI data provided 

information about component model performance. Comparing static and equal to adaptive 

ensembles, we highlight: (i) the adaptive model’s ability to buffer against sparse and 

revision-prone data by using a prior over ensemble weights and (ii) similar, and sometimes 

improved, performance when comparing adaptive to static models, where adaptive models 

require substantially less data to train.

The manuscript is structured as follows: Section 2 describes the CDC influenza training 

data and component models included in all ensembles, defines performance metrics, 

and develops the methodology for our adaptive ensemble. Section 3 presents results, 

investigating the prior’s impact on adaptive ensemble performance and compares the 
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adaptive ensemble to static and equally weighted ensembles. Section 4 relates this work to 

linear pooling algorithms, and discusses our approach in the broader context of data-driven, 

evidence-based public health decision making.

2 | METHODS

2.1 | Data

2.1.1 | Influenza data—Every week throughout the season, for 10 different Health and 

Human Services reporting regions (HHS1, HHS2, …, HHS10) and a national average, the 

CDC publishes surveillance data on the number of patients who visited a sentinel site and 

the number of those patients that were diagnosed with influenza-like illness (ILI)(See Fig. 

1 for ILI over time for all regions and seasons.). Percent ILI is defined as the number of 

patients presenting with a fever (greater than 100F) plus cough or sore throat divided by the 

number of all patient visits times one hundred. More than 3,500 outpatient clinics report ILI 

data to the CDC as part of the ILINet surveillance system. Every week, new ILI data and 

updates to past ILI data are published.

Because of reporting delays, ILI percentages undergo revisions every week after they’re 

first reported, finalized several weeks after the season ends (See Suppl. G4 for an example 

of revisions to ILI in the 2017/2018 season). Component model forecasts are updated week-

to-week because (i) new ILI data is reported and (ii) all previous ILI values are revised. 

Revisions are one factor that make predicting future ILI difficult, and when forecast models 

adjust for this revision process they typically outperform models that do not account for 

data revisions50. Revisions to past ILI data is one factor that will cause component model 

performance from past weeks to change that in turn modifies optimal ensemble weight 

assignments.

2.1.2 | Forecasting data—The FluSight Network (FSN) is a collaborative group of 

influenza forecasters that use historical ILI data to build retrospective component models 

and ensemble forecasts. Forecasts are probabilistic densities over future influenza-like 

illness percentages and, most often, public health officials are provided with probabilisitic 

densities, the median, and 50% and 90% prediction intervals12. Teams train their models and 

generate forecasts as if their model had been applied in real-time across all seasons since 

2010∕2011. The resulting collection of forecasts serves as a historical record of how each 

model would have performed in real-time48.

Probabilistic forecasts for 21 ‘component’ models were submitted to the FSN for 

the 2018∕2019 season (See http://flusightnetwork.io/ for an interactive visulization of 

probabilistic forecasts of ILI, citation48, specifically Table 1, for details about each 

component model, and citation12 for more details on applications of influenza forecasting.). 

The majority of forecasts were submitted retrospectively (models from teams KoT and CU 

submitted in real-time), as if they were forecasting in real-time and contending with ILI 

data revisions. A retrospective forecast that is created during week ω of the influenza season 

must produce forecasts for week 1 of the season assuming no seasonal data, for week 2 of 

the season using data avilable during week 2 of the season (noisy week 1 data), and so on. 

This process prevents a retrospective model from forecasting on revision free influenza data.
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For the CDC FluSight challenges, component forecast models and ensembles built from 

them, forecast 7 key targets (Figure 2). These targets are 1, 2, 3, and 4 week-ahead ILI 

percentages, onset week (defined as the first of three consecutive weeks where the ILI% is 

above CDC-defined baseline ILI%), the season peak week (the epidemic week with highest 

ILI percentage), and the season peak percentage (the highest ILI percentage throughout the 

season). The CDC cannot determine the start of the influenza season and when the peak 

occurs until mid-summer due to continued revisions to data. This means final performance 

data on forecasts—the data used for building ensembles—for 3 seasonal targets (baseline 

onset, season peak week and percentage) can not be compiled until after the season closes. 

Because our adaptive ensemble is trained on within-season data, only component model 

forecasts of the 4 week-ahead targets from the FluSight Network will be used for training.

One difficulty with estimating ensemble weights comes from ILI data revisions. An adaptive 

ensemble must compute weights based on component model performance—the probability 

component model forecasts place on true ILI values. But past ILI data is revised weekly 

and changes component model performance in past epidemic weeks. Unlike an ensemble 

that trains on component models scored on finalized ILI data, an adaptive ensemble must 

account for ILI revisions because they change past component model performance week to 

week.

Retrospective component model forecasts and ILI data from 2011∕2012 up to the 2017∕2018 

season will be used to compare equal, static, and adaptive ensembles. The 2010∕2011 season 

will be used as hold-out data to build a prior for the adaptive ensemble. The structure of our 

training data is shown in Figure 3.

2.1.3 | Performance metrics—A useful predictive model must be well-calibrated 

and accurate, consistently placing high probability on finalized ILI percentages. A proper 

scoring rule51 widely accepted in the forecasting community is the log score51,48, and 

defined as the predicted probability placed on a future true (or finally revised) ILI value. 

Proper scoring rules measure a forecast’s calibration and sharpness52,53 by penalizing a 

predictive distribution F that does not match the distribution of true values G52. By assigning 

higher scores for a forecast that matches the true data generating process, a proper score 

encourages both calibration and sharpness 52,53,54,55.

The CDC adopted a modified log score as their standard scoring metric. Given a model with 

probability density function f(z) and true ILI value i ∗, both the log score and modified log 

score can be written

log score (f) = log ∫
z = i ∗ − w

z = i ∗ + w

f(z)dz , (1)

where ω is a small positive number. The traditional log score sets ω = 0% and this is the 

metric we use to compare ensembles.

In practice, we bin predictive probabilities of ILI percentage from 0 to 13% by 0.1% plus 

a single bin from 13% to 100%. The proper log score reduces to computing the log of the 
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probability given to the single true ILI bin Models that place high probabilities on the bins 

containing the observed final ILIs are scored closer to 0 (perfect score), while models that 

place low probabilities on observed ILI bins are scored closer to −∞ (the worst score). Log 

scores are truncated to −10 to follow convention from CDC FluSight scoring17.

2.2 | Ensemble Framework

2.2.1 | Ensemble model specification—Static and adaptive ensemble algorithms use 

a mixture model to combine (or average) component models forecasts of influenza-like 

illness. The probabilistic approach to training these ensembles is similar, but the adaptive 

ensemble has two principal advantages over the static ensemble. By specifying prior 

probability that at first places equal weight on component models, the adaptive ensemble 

can combine component models with no training data. The choice of prior for our adaptive 

ensemble is meant to discourage erratic shifts when assigning weights to component models 

as we move week-by-week through an influenza season. The adaptive ensemble will use 

a likelihood function to learn which component models are performing better than others 

and update prior weight assignments each week. This is in contrast to the static model. The 

static model too will use the same likelihood function to find optimal weights for component 

models, but no prior is included and weights are assigned at the beginning of the season and 

are fixed. Because weights are fixed the static ensemble requires multiple seasons of training 

data to find weights the model assumes are optimal over an entire season.

We take two approaches to finding optimal ensemble weights: a maximum likelihood 

method (for the static ensemble) and a maximum aposteriori Bayesian approach (for the 

adaptive ensemble). Below we choose to find optimal weights using the EM algorithm 

and Variational Inference56,57,58 which find stable optima at the price of slow convergence. 

Alternative methods like a quasi-newton59, or the broader class of sequential quadratic 

programming algorithms60 could be used to find optimal weights with superior convergence 

properties but may be less stable than the EM and VI approaches61.

Our general ensemble approach, for both static and adaptive ensembles, assumes a 

generative model for our data—ILI percentage at time t (yt)—by first sampling a component 

model m with probability πm, and second, sampling the ILI percentage from the component 

model m with probability mass function fm(i). (In practice, the submitted probabilistic 

forecasts fm(i) are probability mass functions defined over discrete bins of possible ILI 

incidence. These are often discretized versions of probability densities.)

z(t) Cat π1, π2, ⋯, πM (2)

yt ∣ z(t) fz(t) (3)

where z(t) is a vector of length M and M is the number of component models included 

in the ensemble. Each entry in z(t) corresponds to one of M possible component models 

and assigns the value 1 to the model that generated the observed ILI percentage yt and 0 

otherwise. The probability of z = (1,0,…,0) = π1 and the probability of z = (0,1,…,0) = π2 

and so on.
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We denote probability density selected by z(t) as fz(t). The weights π1,π2, πM are the only 

parameters we can change. We have no access to how the component models were trained 

or to parameters of the models, since we only receive a discretized probability mass function 

for each component model f in our applied setting.

This framework conveniently expresses the probability distribution over possible ILI values 

as a convex combination of component models by averaging over the random variable z. We 

define the probability of observing an ILI percentage at time t,

p yt ∣ π = ∑
z(t)

p[z(t)] × p yt ∣ z(t) = ∑
m = 1

M
πmfm yt (4)

where p [yt|z(t)] is the component model f selected by z(t). The πs are required to be 

non-negative and sum to one.

This mixture model framework for probabilistic model averaging makes the reasonable 

assumption that no single model is responsibile for generating ILI values over time. 

Instead, individual models propose different mechanisms and incorporate different types 

of data to model how ILI evolves over time. A probabilistic average aims to emphasize 

models that lead to accurate forecasts (by assigning these models larger weights) and 

minimize those that lead to poor forecasts. By assigning weights to many different 

models a mixture approach to ensemble forecasting may reduce noise compared to an 

individual forecast50,27,29,26,28. Previous work forecasting infleunza-like illness, ebola, 

dengue, zika, and other infectious diseases have used a probabilistic averaging approach 
25,24,12,17,18,19,23,62,63.

This probabilistic averaging approach has become a standard for the field because of the 

above reasons.

2.2.2 | Expectation-Maximization method for weight estimation—Though (4) is 

a convenient way to specify the model, directly optimizing the loglikelihood in this form is 

difficult. The loglikelihood over all T time points equals

logp(D ∣ π) = ∑
t = 1

T
log ∑

m = 1

M
πmfm yt , (5)

and is a summation over log-sums, where D = y1, y2, ⋯, yt  is the observed T ILI 

percentages. An alternative method to optimize the loglikelihood40,64 considers the 

loglikelihood over both ILI percentages and the set of hidden indicator variables z(t)—one 

for each week of data—that decide which component model (from M possible models) was 

selected to generate data point yt. The hidden variables Z simplify the likelihood to

p(D, Z ∣ π) = ∏
t = 1

T
∏

m = 1

M
πmfm yt

z(m, t)
(6)
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where z(m,t) equals 1 when the mth model generated the tth ILI observation and 0 otherwise 

(ie. z(t) = [z(1,t), z(2,t), z(M,t)]), and Z is a M × T matrix of all hidden variables. 

The Expectation-Maximization (EM) algorithm56 iteratively optimizes a lowerbound 

on the logliklihood, the expectation over p(D, Z ∣ π) with respect to p Z ∣ D, πt − 1

or p Z ∣ D, πt − 1 or Ep Z ∣ D, πt − 1 p(D, Z ∣ π) to find the component model weights that 

maximize the loglikelihood (deEM-MM Fig. 2 Alg. 1). The prefix de (degeneracy) refers to 

this algorithm’s inability to change parameters inside component models and the suffix MM 
(mixture model) references the assumed data generating process.

2.2.3 | Variational Inference for weight estimation—While the deEM-MM 

algorithm find an optimal set of weights, it considers π a fixed vector of parameters. If 

instead we assume π is a random variable, we can restructure our problem as Bayesian and 

infer a posterior probability over weights. Our Bayesian framework extends (6) by modeling 

the posterior probability of π

p(π ∣ Z, D) ∝ p(π) × p(D, Z ∣ π) . (7)

While many different choices are available for a prior over ensemble weights, p(π), we 

chose a Dirichlet distribution because it is conjugate to the likelihood. We further decided 

on a Dirichlet prior that has a single parameter (α) shared across all M models. The scale 

of the shared parameter (α) governs the influence of the prior distribution on the posterior. 

A larger value of α shrinks ensemble weights closer towards an equally weighted ensemble. 

Equal weights are a reasonable first choice for many ensemble settings and especially when 

performance data has not yet been collected for component models. Smaller values of α 
allow the model to rely more heavily on the observed data.

Typically the prior is fixed during training. But because in our setting the amount of ILI data 

is growing, past ILI percentages are revised as we move through a season, and component 

model performance may change over time, we allow the prior to change over time. A 

time-dependent prior can act to continually weaken the influence of the (likely to be revised) 

data on the ensemble weights and consistently pull component model weights towards equal 

over the course of the season, guarding against several factors such as data revisions that 

change past component model performance.

We specify the prior as

πt Dir[α(t)]

where α(t) is the parameter (the same across all M component models) that defines the 

Dirichlet distribution at time t. We chose (t) to be a constant fraction (ρ) of the number 

of observations on component model performance at time t divided equally amongst all M 
component models

α(t) = ρN(t)
M , (8)
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where N(t) is the number of training data points, M is the number of component models, 

and ρ is a value between 0 and 1. Throughout the season the prior parameter will grow 

linearly as the ensemble trains on an increasing number of observations N(t) and regularize 

component model weights at a constant rate.

We can plug our specific prior in for time t

p πt ∣ Z, D ∝ p πt × p D, Z ∣ πt
= Dir πt ∣ α(t) × p D, Z ∣ πt . (9)

and find an optimal set of mixture weights by optimizing the following function of π and Z

logp πt ∣ Z, D ∝ ∑
t = 1

T
∑

m = 1

M
1[z(m, t)]log πmtfm yt + ∑

m = 1

M
[α(t) − 1]logπmt . (10)

We note that the first term on the right-hand side of equation (10) is the same as taking the 

log of the frequentist expression for the likelihood shown in equation (6). Intuitively, we 

expect a stronger (increasing ρ) even prior to encourage weights across components to move 

towards 1∕M, uniformly distributing probability mass to every component model.

To estimate the posterior probability over ensemble weights (10), we will use a variational 

inference algorithm (deVI-MM). Variational inference is similar to the EM algorithm and 

both can be motivated by introducing a distribution over hidden variables and decomposing 

the loglikehood into two parts: a lowerbound ℒ on the log likelihood log p(D ∣ π) and an 

error term that is the difference between the lowerbound and loglikehood (ℒ − logp(D ∣ π)).

Given weights π, hidden variables Z, and fixed data D, we first rewrite the posterior over Z 
and π

p(Z, π ∣ D) = p(Z, π, D)
p(D)

Reordering terms and taking the log,

log[p(D)] = log p(D, Z, π)
p(Z, π ∣ D) = log p(D ∣ Z, π)p(Z, π)

p(Z, π ∣ D) .

We can express the marginal loglikelihood in terms of the complete loglikelihood 

(numerator) and log of the posterior distribution over π and Z (denominator). The last step 

introduces a distribution q over hidden variables Z and π

log[p(D)] = log p(D ∣ Z, π)p(Z, π)
q(Z, π) × q(Z, π)

p(Z, π ∣ D)

and integrates over q(Z)

McAndrew and Reich Page 9

Stat Med. Author manuscript; available in PMC 2022 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



log[p(D)] = Eq log p(D ∣ Z, π)p(Z, π)
q(Z, π) + KL[q(Z, π)‖p(Z, π ∣ D)] (11)

where KL is the Kullback-Leibler divergence65, a non-negative function of q. Since KL is a 

non-negative function, the first term on the right hand side is a lower bound to the marginal 

loglikeihood and the second term, the KL term, is the difference between the marginal 

loglikelihood and the lower bound. Iteratively optimizing this lower bound can be shown to 

monotonically improve the loglikelihood and converge on the best possible representation 

(q) of the true posterior distribution over Z, and more importantly, π 56,40.

The EM and VI algorithms diverge on how to choose q: the EM algorithm considers π 
a fixed set of parameters and chooses q = q = p(Z ∣ π, D), zeroing out the above Kullback-

Leibler divergence but also assuming p(Z ∣ π, D) can be computed (see40 for theoretical 

development and48 for an application to infectious disease forecasting). The VI algorithm 

allows any choice for q. The mean-field approximation, the most common choice for q, 

factors q into discrete pieces q = ∏jqj(z)57,58 and is the approach we take. We chose to 

factor our distribution over hidden variables into a distribution over Z and distribution over 

Z, (q,Z) = q(Z) q(π) to separate indicator variables from mixture weights.

This choice yields (see details in Suppl. 1) a q(π) that follows a Dirichlet distribution and 

indicator variable z(m,t), a single element of z(t), that follows a Bernoulli distribution:

q(π) Dir α(t) + ∑
t = 1

T
r(m, t) (12)

q[z(m, t)] Bern[r(m, t)], (13)

where the responsibility r(m, t), or the probability that model m generated datapoint yt, 

equals

r(m, t) = exp Eπlog πm + log fm yt
∑m = 1

M exp Eπlog πm + log fm yt
(14)

and the responsibilities summed over component models (m) equals one. The distribution q 
[z(m, t)] computes the probability ILI value yt was generated by model m. Since the vector 

z(t) has entries z(1,t), z(2,t), z(M, t) which are each Bernoulli distributed variables required 

to sum to one, the vector z(t) is Dirichlet distributed.

The Variational approach here can also be interpreted as a generalization of the EM solution. 

If we fix π to be a non-random parameter, the responsibilities reduce to

r(m, t) = πmfm yt
∑m = 1

M πmfm yt
, (15)
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the same responsibility function for the EM algorithm48. Both VI and EM algorithms 

will find a unique global maximum of the log-likelihood (5) due to the convexity of the 

log-likelihood function (see analysis of convexity in Suppl. 3).

2.2.4 | How prior impacts ensemble weights—The prior can be recognized as a 

regularizer. The maximum aposteriori estimate (MAP) for the mth component model can be 

computed by dividing the weight given to model m by the sum over all weights (sum over 

m)

MAP πm =
α(t) + ∑t = 1

T r(m, t)
∑mα(t) + N(t) (16)

where ∑m, tr(m, t) = N(t) is the total number of ILI values used for training at time t. Though 

useful for computation, an alternative characterization expresses the MAP as a convex 

combination of the prior and the percent responsability assigned to component model m. 

Define the prior percent weight assigned to component model m as αm(t)/∑mαm(t). and the 

percent responsibility assigned to component model m due to the data as ∑tr(m, t)/N(t). The 

MAP of π can be reexpressed as

MAP πm = α(t)
∑mα(t)

ρ
1 + ρ + 1

1 + ρ
∑t = 1

T r(m, t)
N(t) , (17)

a convex combination of the prior plus responsibility learned from the data. Strengthening 

the prior, in our case increasing ρ, shifts the MAP estimate away from the data-estimated 

responsibility and towards the prior. The constant shift, despite increased training data, is a 

result of our time-dependent prior. Note that this model is likely not a consistent estimator 

for ρ as we are more interested in forecast accuracy than on inference for ρ. By setting 

our prior percentage to equal across all models in the ensemble (1∕M), the prior weight ρ 
interpolates between an equally-weighted ensemble (ignoring past model performance) and 

a completely data-driven weighting.

2.3 | The ensemble framework as a doubly mixed model of pseudocounts

The choice of a prior α(t) = ρN(t)
M  may appear arbitrary, but this prior can be motivated using 

two techniques: (i) using pseudocounts to reinterpret the Bayesian framework of the adaptive 

ensemble. and (ii) supposing ILI data is generated by a mixture of an equally weighted 

ensemble and an ensemble trained on the data.

From our Bayesian framework, we found weights were distributed, from (12), Dirichlet

q(π) Dir α(t) + ∑
t = 1

T
r(m, t) . (18)

This distribution over weights can be reinterpreted as psuedocounts. Instead of assuming 

a single observation is a mixture of M component models, we can assume at time t 
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each component model generated a subset of observations from the total number of ILI 

observations as follows

θ1, θ2, ⋯, θM Dir[α, α, ⋯, α] (19)

N1(t), N2(t), ⋯, NM(t) Dir θ1, θ2, ⋯, θ (20)

where θ is the expected number of ILI values generated by component model m (θ 
= N(t)πm) and πm is the fraction of ILI values generated by component model m, α 
parameterizes a prior distribution over pseduocounts (over the θs), N(t) is the number of ILI 

values at time t and.

If we define N(t) × M variables ILIm,t as the value 1 when component model m generated 

ILI value t and 0 otherwise, then

The posterior distribution (see40) over θ is

θ1, θ2, ⋯, θM Dir α + ∑
t

ILI1t, α + ∑
t

ILI2t, ⋯, α + ∑
t

ILIMt (21)

We can draw a parallel between the above model of pseudocounts and the posterior we 

found in (12). The sum of responsabilities over all ILI values at time t is similar to the 

number of data points generated by model m, or ∑t ILImt. Likewise, the parameter that 

controlled the prior over pseduocounts, α, resembles our prior α(t) from (12).

The Dirichlet distribution in (21) can be parameterized as

θ1, θ2, ⋯, θM Dir N(t)π1*, N(t)π2*, ⋯, N(t)πM* (22)

where

πm* =
α + ∑t ILImt
∑mα + N(t) , (23)

and we can again draw a parallel between this fration of ILI values generated by component 

model m and the MAP estimate from our Bayesian framework (16). Our goal now is to 

find a suitable prior α. We can motivate the choice of a prior by assuming our ensemble of 

component models will be combined with an equally weighted ensemble.

If we assume the data generation process for ILI values is a mixture of an equally weighted 

ensemble (fequally) and an ensemble that is a mixture of component models fm as in (2) and 

(3) (f
trained) then we can write the mixture model with constant weights ρ and (1 − ρ) as
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p(y) = ρfequally + (1 − ρ)ftrained

= ρ ∑
m = 1

M 1
M fm + (1 − ρ) ∑

m = 1

M
πtrained fm

= ∑
m = 1

M ρ
M + (1 − ρ)πtrained fm

If we assume that the weights ρ will be small relative to 1 then

p(y) = ∑
m = 1

M ρ
M + (1 − ρ)πtrained fm ≈ ∑

m = 1

M
πtrained + ρ

M fm

and so our weights for this doubly mixed model are proportional to

πdoubly mixed ∝ πtrained + ρ
M . (24)

We can guarantee our doubly mixed weights sum to one by dividing each weight by the sum 

of all weights plus the additional constant ρ
M

πdoubly mixed =
πtrained + ρ

M
1 + ρ

(25)

where we used the fact that ∑mπtrained = 1.

Assume each component model generated N(t)πdoubly mixed of the ILI values on average.

N(t)πdoubly mixed = N(t)
πtrained + ρ

M
1 + ρ

=
N(t)πtrained + ρN(t)

M
1 + ρ

≈ N(t)πtrained + ρN(t)
M

(26)

A potential prior that will act like a mixture of an equally weighted ensemble and an 

ensemble fit via maximum likelihood is then

α(t) = ρ N
M .

2.3.1 | deEM-MM and deVI-MM Algorithms—A comparison of the EM and VI 

algorithms is shown below in Algorithms 1 and 2. The EM and VI algorithms are similar 

to one another: both rely on adding hidden variables to the loglikelihood and iteratively 

maximizing a lower bound. When computing Z, both algorithms need the probability that 
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component model m generated data point i for models 1 to M and data points 1 to T. A 

key difference is how the EM and VI algorithms approximate the distribution over hidden 

variables Z. The EM algorithm requires the previous point estimate of ensemble weights. 

The VI algorithm requires the ensemble weight’s expectation (see Suppl. 2 for details on 

calculating E[π]). These differences are present in step 7, updating Z, and step 10 updating 

π. Another difference is in evaluating model fit. Because the EM algorithm chooses as q 
the exact conditional probability over Z, we can monitor convergence by computing the 

loglikelihood, log of (6). The choice of q for the VI algorithm allows us to compute a related 

quantity called the Evidence Lower Bound (ELBO). The ELBO is defined as ELBO = 

loglikelihood−{log[q(π)] + log[q(Z)]}, or the difference between the loglikelihood and our 

approximation over hidden variables. When updating the ensemble weights, both algorithms 

sum over the probability yt belongs to model m, but the VI algorithm adds an additional term 

to the ensemble weight, the prior.

2.4 | Experimental design

Five ensemble models will be analyzed in detail (Table. 1). The equally-weighted (EW) 

ensemble assigns the same weight (1∕M) to all component models. The Static ensemble 

trains on all past component model forecasts of ILI and assigns weights to component 

models before the start of the next season. Weights are kept fixed throughout the next 

season. The adaptive model with three types of regularization, that correspond to three 

values of ρ, will be studied: 0% regularization (Adaptivenon), ‘optimal’ regularization 

(Adaptiveopt), and ‘over’ regularization (Adaptiveover). All adaptive ensembles will begin 

each season with no training data and learn optimal weights over the season. We will 

consider our adaptive model ‘optimally’ regularized by computing log score statistics for the 

held-out 2010∕2011 season and choosing the prior that has the highest average log score. The 

equally weighted, static, and adaptive ensemble generate forecasts of 1, 2, 3, and 4 week 

ahead influenza-like illness at the national level.

2.4.1 | Training and scoring component models for ensembles—We created a 

record of component model scores on revisable ILI data, as if they had been scored in 

real time, every week throughout each season. Starting each season with no data, adaptive 

models were trained on component model log scores throughout a season, and our static 

ensemble was trained on finalized component model log scores from past seasons, not the 

current season. Using within season component model performance data impacted how the 

adaptive model was trained in two ways: (i) every epidemic week new ILI data was observed 

and generated new component model log scores, and (ii) past ILI data was revised, which 

in turn changes past component model log scores. Ensemble log scores were calculated on 

ILI percentages reported on EW28, the “final” week used by the CDC FluSight challenges. 

ILI values at or after EW28 for each season are considered definitive. Based on previous 

work48, and due to the relatively smaller amount of data available to the adaptive ensemble, 

we chose to fit a ‘constant weight’ ensemble model—the constant referring to the same 

weight assigned to a component model for differing targets and regions—for both the static 

and adaptive approaches.
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2.4.2 | Fitted ensemble models—We computed adaptive ensembles for prior values 

from close to 0% (10−5 which we will refer to as 0%) to 100% by 1% increments for 

the 2010∕2011 season. To determine a prespecified ‘optimal prior’, we chose the prior 

corresponding to the highest average log score. The 2010∕2011 season was removed from 

all formal comparisons between ensembles. The adaptive ensemble corresponding to the 

optimal prior was used for formal comparisons.

For each season in 2011∕2012 through 2017/2018, we computed adaptivenon, adaptiveopt, 

adaptiveover, ensembles using the VI algorithm developed. Static ensemble and equally-

weighted ensembles were also fit at the beginning of each season, using only data for prior 

seasons.

2.4.3 | Formal Comparisons—To compare ensemble models, we computed the 

difference between the log score assigned to one ensemble versus another (see17 for 

a similar regression approach to comparisons). A random intercept model described 

differences between log scores, averaged over epidemic weeks and paired by season, region, 

and target.

Dw, s, r, t N β0 + as + br + ct, σ2

as N 0, σa2

br N 0, σb
2

ct N 0, σc2

(27)

where D is the difference between log scores assigned to two ensembles: for epidemic week 

ω, in season s, region r, and for target t. The fixed intercept (average difference in log score 

between ensemble models) is denoted β0, and season (as), region (br), and target (ct) effects 

are Normally distributed N  with corresponding variances.

We fit two random effects models: one comparing the adaptive vs. equally-weighted 

ensemble, and the second comparing the adaptive vs. static ensemble. The conditional 

mean, 95% confidence interval, and corresponding p-value are reported. An additional 

bootstrapped p-value is also reported. Random samples (with replacement) are selected 

from the set of all season-region-target-epidemic week tuples. For every random sample, 

a random effects models is fit and conditional means collected for: seasons, regions, and 

targets. The set of random samples is centered to create a null distribution and compared 

to our original dataset’s conditional mean. We report the empirical probability a random 

sample from the centered null distribution exceeds our original dataset’s conditional mean.

3 | RESULTS

3.1 | Choosing prior to maximize performance

We chose an optimal prior for the adaptive model by fitting our adaptive model to the 

2010∕2011 season for priors from 0% to 100% by 1% and selecting the prior with the highest 

average log score (Suppl. 7 includes adaptive fits and average log scores for all seasons 

from 2010∕2011 to 2017∕2018). The average log score for the 2010∕2011 season peaks at a 

prior of 8% (Fig. 4), and we will consider an adaptive model with 8% prior (ρ= 0.08) our 
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adaptiveopt ensemble. After a prior of 8%, the log score sharply decreases. This decrease in 

performance suggest ensemble weights are over regularized, and we chose a 20% prior as 

our adaptiveover ensemble. Finally, a 0% prior was chosen as our adaptivenon ensemble.

3.2 | Prior successfully regularizes ensemble weights

We compared the adaptivenon, adaptiveopt, and adaptiveover ensembles (ρ = 0.00, 0.08, 

and 0.20 respectively) to investigate how the ensemble weights change with the prior. 

Adding a prior regularizes component model weights (Fig. 5). Smaller priors yield higher 

variability in ensemble weights throughout any given season. For example, in 2017/2018 

(Fig. 5), this is especially evident for the adaptivenon ensemble, when ensemble weights 

vacillate between assigning almost all weight to one component model or another. The 

adaptiveopt and adaptiveover weights, in comparison, do not show as high variability over 

time. Component model weights for all three ensembles do track one another, with specific 

model weights moving up and down in unison, albeit in a more muted fashion for the 

stronger 8% prior (adaptiveopt) and 20% prior (adaptiveover). The patterns shown in Fig. 5 

persist in other seasons as well (see Suppl. 4).

3.3 | Comparing adaptive vs. equally-weighted and static ensembles

Adaptive ensembles—starting each season with no training data—consistently outperform 

equally-weighted ensembles, and show comparable performance to static ensembles (Fig. 6). 

The adaptiveopt model has higher log scores than either adaptivenon and adaptiveover 

models, and the EW model. The adaptiveover, unlike the adaptivenon model, always 

outperforms the EW model, indicating it is better to over- than under-regularize, at least 

to some degree. The static model—trained on multiple seasons of data—performs the 

best. Adaptivity improves over assigning equal weights to component models and performs 

similar to the data-rich static model.

Formal comparisons (see Fig. 7 and regression table 1) demonstrate the adaptiveopt 

ensemble has statistically higher log scores compared to the EW ensembles, and shows 

similar performance to static ensembles. The adaptiveopt ensemble has lower log score 

point estimates against the static models for any particular choice of season, region, and 

target, but the performance between static and adaptiveopt is not statistically different. 

EW and adaptiveopt ensembles perform similar for the 2012/2013 season. The 2015/2016, 

2016/2017, and 2017/2018 season does show better (but not significant) performance for 

the static ensemble. This suggests that the static model’s performance comes from training 

on multiple seasons of data. Differences in performance are less variable when stratified by 

region (see Fig. 7B), and the difference in log scores between all ensembles decrease as 

forecasting horizons increase. This reflects the difficulty in forecasting further into the future 

rather than ensemble performance.

In select strata the adaptive ensemble shows a statistically significant higher log score 

compared to the EW and close to signficiant difference compared to the static ensemble. 

This significance is not enough to conclude the adaptive ensemble should outperform the 

static ensemble in most cases, however the data suggest, unsurprisingly, that the static 

ensemble performs relatively better the more data is has to train on.
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3.4 | It may be better to over regularize than to under regularize

Formal comparisons (see regression tables 2 and 3) show that both the adaptiveover 

and adaptivenon ensembles outperform the equally weighted ensemble and have similar 

performance when compared to the static ensemble. Compared to the adaptivenon ensemble, 

the adaptiveover ensemble shows improved performance (i.e. higher log scores) against the 

equally weighted and static ensemble.

The adaptiveover has an average increase in log score compared to the equally weighted 

ensemble between 0.06 to 0.21. The adaptivenon has an average increase between 0.03 

to 0.11. The average increases in log score for comparions between the adaptiveover and 

equally weighted ensemble are all significant. The largest pvalue is 0.03, when comparing 

the adaptiveover to the equally weighted ensemble in the 2012/2013 season, and all other 

pvalues are smaller than 0.01. A small fraction of increases in log score for comparisons 

between the adaptivenon and equally weighted ensemble are significant. The adaptivenon 

ensemble shows no improvement in HHS6 with an average increase in log score of 0.00 

(95CI = [−0.09, 0.09]; pvalue = 0.99). However, the adaptiveover shows a signficant 

increase in log score in HHS6 (average increase0.07; 95CI = [0.03,0.12]; pvalue < 0.01). 

Results between the adaptiveover and adaptivenon versus the static ensemble are similar

—both ensembles show similar performance when compared to the static ensemble, but 

compared to the adaptivenon ensemble, differences between the adaptiveover and static 

ensemble are more positive and have smaller pvalues.

3.5 | The adaptive ensemble’s ability to optimize weights within season

The adaptive model has the opportunity to outperform the static model by tailoring 

component model weights within season. Training weights based on component model 

performance data throughout the season is useful, as is shown by the adaptiveopt model 

outperforming the EW model. But the adaptive ensemble must accrue several weeks of 

training data before it can perform similar, and in some cases better, than the static ensemble 

(Fig. 8).

However, the adaptive models also are able to, without any prior data, learn how to create an 

optimal weighting within a season. While the adaptive models may be penalized early on in 

a season by not possessing the historical knowledge of which models have performed well, 

they adjust for this by learning which models are performing well in a particular season. 

This is illustrated clearly in Fig. 5 where the heaviest model at the end of the season (with 

46.2% of the weight for the adaptiveopt ensemble) was assigned only 4.82% of weight 

at the beginning of the season. This ability to adapt to season-specific model performance 

appears to provide the adaptiveopt model with a slight advantage over the static model in the 

middle and end of the season.

4 | DISCUSSION

We developed a novel algorithm for assigning weights to component models that starts with 

no training data at the beginning of each season and shows comparable performance to 

a static ensemble trained on multiple seasons of data. This novel ensemble can combine 
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component models immediately because it requires no training data, and when component 

model performance data is used, it is specific to the current season’s forecasts. Our 

model extends a previous ensemble algorithm25 by assuming component model weights 

are random variables, rather than fixed quantities. This model reassigns component model 

weights every week, but because component model performance varies within a season due 

to factors like revisions to past influenza data, we introduced a time-dependent uniform 

Dirichlet distribution that regularizes ensemble weights. This adaptive ensemble outperforms 

an equally-weighted ensemble, and performs similarly to a static ensemble that requires 

multiple years of data to perform well.

It is expected that learning from training data, and the amount available, would contribute 

to better predictive performance. The equally-weighted model ignores any training data, 

and similar to an adaptive ensemble with no training data, assigns equal weights. The 

equally-weighted ensemble performs worst. The next best model, the adaptive ensemble, 

trains on component model performance within the same season. Even though the static 

model has multiple seasons of training data available, and does have the best performance, 

the adaptive ensemble is not far behind. It is difficult to tell whether the similar performance 

is a shortcoming of the static or adaptive ensemble. Similar performance between ensembles 

could be because component model performance from past seasons (available to the static 

ensemble) does not generalize to future seasons. Alternatively, the adaptive ensemble 

may not be using the within-season training data efficiently and could be leaving behind 

hidden patterns in the component model forecasting data. But we did find static weights 

outperforming the adaptive ensemble early on in the season, and if enough seasonal data was 

available it is possible that the static ensemble could statistically outperform the adaptive 

ensemble. These results suggest a model could perhaps use the static ensemble weights, 

when available, as a prior for the adaptive ensemble.

The advantage of the adaptive ensemble over the static ensemble is the ability to combine 

models without any training data. If an ensemble is needed for a new infectious agent or for 

a new region where component models have just begun to make forecasts, a static ensemble 

cannot be trained. An equally-weighted ensemble could be used. But we found an adaptive 

ensemble like the one we propose can assign equal weights to component models at first 

and, by learning optimal weighting over time, outperform an equally-weighted ensemble.

Though there may be an optimal mix between an equally-weighted and training data only 

approach to ensemble models, regularizing ensemble weights increased adaptive ensemble 

performance. Not only can regularization improve adaptive model performance, but could 

also improve the performance of the static model (Suppl. 6). Improving performance 

by regularizing ensemble weights with a time-dependent uniform Dirichlet prior may be 

applicable to any ensemble weighting scheme.

Our empirical work suggests an optimal prior near 8%, but we expect the optimal 

prior to vary by season, region, and target. Different priors will likely be optimal for 

different biological phenomena too. A more flexible prior could improve adaptive ensemble 

performance: changing the prior percent throughout the season, allowing the prior to depend 

on performance data from past seasons, or modeling the prior on regional and target 
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information. Instead of limiting the prior as a regularizer, we can include outside information 

from past seasons, or patterns in influenza data the ensemble cannot learn from training 

data. If a pattern in data revisions or how component models are assessed is present then 

novel ensemble models could be built that better model past, present, and future noise when 

assessing component model performance. Future research will explore different methods of 

modeling prior ensemble weights.

Our work here connects to Gneiting and other’s work on linear pooling66,67,68,41. Linear 

pools assume that the data is generated by a combination of component models. Similar to 

Gneiting’s work, our weights are optimized with respect to the loglikelihood of a generative 

model, but the loglikelihood is really a different representation of a log score—the log of the 

probability corresponding to weights π. Our model could be fit by minimizing a generic loss 

function based on log score, but we found the EM (and VI) algorithms fit our model fast and 

consistently found a global optimum. Unlike Gneiting, we did not recalibrate the combined 

predictive distributions, and methods like the beta transformed linear pool66 or shifted linear 

pool69 could improve predictive performance even further.

This paper has many limitations future work can address: (i) better choice of prior, (ii) 

accounting for correlated component models, (iii) post-processing or ‘recalibrating’ our 

combined forecast; (iv) inclusion of seasonal targets; and, (v) handling missing forecasts. 

Our adaptive ensemble examined how a prior can impact ensemble performance, but we 

only explored a uniform prior. Future work could study informative priors and how to 

manipulate priors during the course of a season to improve ensemble performance. Our 

model also assumed component models made independent forecasts. A more advanced 

ensemble would examine the correlation structure of the data (region, target), and the 

component model forecasts. In addition, our ensemble model focused on an optimal set 

of weights for forecasting, and made no efforts to recalibrate the combined forecast67. It 

is important to note that this adaptive ensemble can only train on week ahead targets, 

excluding potentially useful information about a component model’s ability to forecast 

seasonal targets such as the seasonal peak, peak intensity, and when the influenza season 

begins. Other ensemble methods may not be limited to training on only week ahead data. 

Finally, our adaptive ensemble does not yet address how to weight component models that 

have submitted forecasts for past epidemic weeks, missed forecasts in the middle of the 

season, and then started submitting forecasts at a later time point.

Recent forecasting of COVID-19 transmission uses an alternative score called the interval 

score70, highlighting the adaptive ensemble’s dependence on the log score. The deEM-MM 

and deVI-MM algorithms depend explicitly on the log score as a measure of the probability 

that each component model generated a given ILI value per epidemic week. For an 

alternative scoring system to work with the adaptive ensemble, component model scores 

would first need to be converted to probabilities that each component model generated a 

given ILI value. We plan to pursue different proposals for how to convert forecast scores to 

probabilities which would generalize the adaptive ensemble to any scoring rule.

Several factors may impact component model performance and a detailed analysis in the 

future of potential factors should be performed to address (i) the most influential factors that 
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contribute to component model performance and (ii) estimates of variability in component 

model performance within a season and across seasons. The association between component 

model performance and targets, and from season to season should also be explored.

From a public health perspective, officials have been moving away from stand-alone 

subjective decision making in favor of incorporating data-driven analyses into decisions. 

This trend has become particularly apparent in infectious disease outbreak management71. 

Adaptive ensembles, providing real-time forecasts of infectious disease, supports this trend 

towards evidence based decision making for public health. Combining their expertise with 

statistical models like our adaptive ensemble, public health officials can work towards 

impeding outbreaks and changing public health policy. Public health officials often find 

themselves making decisions in the middle of crises, times when fast effective forecasting is 

necessary. The adaptive ensemble’s flexibility, reliance only on near-term data, and capacity 

to track unusual disease trends can support accelerated public health decision making.

Adaptive ensembles—reweighting component models, week by week, throughout a season

—can handle sparse data scenarios, admit new component models season by season, and 

shows similar prescience compared to the more data-heavy static ensemble. This added 

flexibility makes them an important tool for real-time, accurate forecasts of an outbreak.

5 | REPOSITORY

The data and code used to train equal, static, 

and adaptive ensembles can be found at https://github.com/

tomcm39/adaptively_stacking_ensembles_for_infleunza_forecasting_with_incomplete_data. 

Influenza-like illness, component model forecasts, and ensemble performance metrics are 

published on Harvard’s Dataverse. Links to the data are provided on the above GitHub page.

Algorithm 1

deEM-MM Algorithm: An Expectation maximization algorithm estimating ensemble 

weights for a Frequentist adaptive algorithm.

1: input: y1×T, π0, τ

2: output: π

3:

4: ℓℓ ← []

5: πM×1 = π0

6: for j=1:maxIters do

7:  ZM×T ← π × f(y)

8:  Z ← Z∕colSum(Z)

9:  π ← rowSum(Z)

10:  π ← π∕ sum(π)

11:  ℓℓ[j] ← computeLL(y,π)

12:  if LL[j] - LL[j-1] < τ then

13:   break
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14:  end if

15:  return π

16: end for

Algorithm 2

deVI-MM Algorithm: A Variational Inference algorithm estimating ensemble weights 

for a Bayesian adaptive algorithm. Although the deEM-MM (above) and deVI-MM 

algorithms have different underlying probability models, they follow similar steps. The 

major differences between EM and VI algorithms are: how Z is computed (step 7), the prior 

over π (step 10), and how weights are evaluated (steps 11 and 12).

1: input: y1×T, π0,αM×1, τ

2: output: π

3:

4: ELBO ← []

5: ZM×1 = π0

6: for j=1:maxIters do

7:  ZM × T exp(E(logπ) + logf(y))
8:  Z ← Z∕colSum(Z)

9:  π ← rowSum(Z)

10:  π ← π∕ sum(π) + α

11:  ELBO[j] ← computeELBO(y,π)

12:  if ELBO[j] - ELBO[j-1] < τ then

13:   break

14:  end if

15:  return π

16: end for

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Weighted influenza-like illness by epidemic week for all 10 HHS regions and at the national 

level, for seasons 2010/2011 up to season 2017/2018, and an example component model 

probabilistic forecast. Most often, influenza-like illness percents are small at the beginning 

of the season (epidemic week 40), increase to a single peak, and then decrease. On occasion 

more than one influenza-like illness peak will form as was the case for the national ILI for 

season 2017/2018. Probabilistic forecasts attempt to quantify the uncertainity in future ILI
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FIGURE 2. 
Overview of forecasting targets and data used in model estimation. Top Panel: Zooming in 

on one region-season illustrates the 7 forecasting targets, divided into week ahead (1, 2, 3, 

and 4), and seasonal (onset, peak week, peak percentage) targets. Due to delays in reporting 

at time t, forecasting models only have data available up to t − 2 weeks, making the current 

calendar week the 2 wk ahead forecast (sometimes titled the nowcast). Bottom Panels: 
Three ensemble algorithms: equally-weighted, static, and adaptive, take different approaches 

to training and prediction, illustrated by how they would operate in the 2017/2018 season. 

Equally-weighted ensembles ignore past ILI data, weighting all component models the same 

and forecast the next season. Static ensembles train on all previous seasons (green, up-right 

slanting lines), find optimal weights for all component models, and keeping these weights 

fixed, forecast the next season (red, down-right slanting lines). Adaptive ensembles train 

and forecast all in the current season (red and green cross-hatch), ignoring any past data. 

For adaptive ensembles, every week component model weights are updated on all current 

within-season data and then used to forecast the next week.
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FIGURE 3. 
The structure of a single season of training data used by an ensemble model. Within every 

season and for each epidemic week, component models make forecasts of ILI for 10 HHS 

regions and at the national level, and for 7 different targets. Component model forecasts are 

then scored using a metric called the log score. Every epidemic week generates 77 scoreable 

forecasts per component model.
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FIGURE 4. 
The log score for the 2010/2011 season, averaged over region, target, and epidemic week for 

priors (ρ) from 0% to 100% by 1% increments. The prior corresponding to the maximum 

log score (prior (ρ)=8%) was chosen as our adaptiveopt ensemble for formal comparisons to 

static and equally weighted ensembles.
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FIGURE 5. 
Component model weights plotted over epidemic weeks for all ensembles during the 

2017/2018 season. We highlight the weights for the two component models the adaptivenon 

ensemble assigned the most weight to at the end of the season and compare this to the 

sum of all other model weights. The component models that were assigned the heaviest 

and second heaviest model weight are fixed over all epidemic weeks. (A) A simplex plot 

shows how, for each ensemble, the weights assigned to the top two models and the rest 

of the models move together across the season. The lines can be seen as a trajectory, 

beginning at the black pentagon (the equal-weight ensemble) and, following the arrows, 

migrate through the simplex with each point representing the triple (πt
(1), πt

(2), ∑j = 3
M πt

(j)) of 

weights estimated in week t. The estimated weights from the static ensemble using all data 

prior to 2017/2018 (but, unlike the adaptive ensemble, using no data from this season) are 

represented by the ‘x’. Plots of πt
(1) (panel B) and πt

(2) (panel C) across all weeks t in the 

2017/2018 season. The estimates of this model’s weight from the static ensemble and the 

equal weight (1/21) are shown in horizontal dashed lines. (D) A plot of ∑j = 3
M πt

(j) across 

weeks t. The estimates of the sum of these models’ weights from the static ensemble and the 

equal weight (19/21) are shown in horizontal dashed lines.
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FIGURE 6. 
Log score averaged over region and target for ensemble algorithms stratified by season. The 

8% prior was prespecified as the optimal prior based on analysis of the excluded 2010/2011 

season. All ensembles show variability in performance across seasons. Adaptive and static 

ensembles outperform the equal weighted ensemble, the adaptive and static ensemble 

showing similar performance. Adaptive ensembles perform similar to static ensembles 

despite having less training data in later seasons.
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FIGURE 7. 
Log scores from equally-weighted, static, and adaptive ensembles within season, region, 

target, and epidemic week. Estimates and 95% confidence intervals are plotted from 

two random intercepts models that estimate (i) the difference in log score between 

adaptive and equally-weighted ensembles and (ii) the difference between adaptive and 

static ensembles. Positive differences suggest the adaptive ensemble performs better than 

the reference ensemble. Adaptive ensembles outperform the equally-weighted ensembles, 

though the qqually-weighted and adaptive ensembles perform similarly in the 2012/2013 

season. Adaptive ensembles perform similar to static ensembles with differences in log 

scores favoring static or adaptive ensembles cannot obtain statistical significance for 

both parametric and bootstrapped p-values. Adaptive ensembles consistently outperform 

equally-weighted ensembles, and show similar or slightly improved (but not significant) 

performance against static ensembles.
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FIGURE 8. 
Average log score over epidemic weeks stratified by target for adaptiveopt (blue solid line), 

static (orange dashed line), and EW (green dotted line) ensembles. Across targets, all 

models perform better at the beginning and end of the season. Performance decreases at 

approximately 10 weeks into the season, corresponding with peak ILI values. Comparing 

ensembles, the adaptiveopt model performs better than the EW model at all time points, the 

difference between performance increasing throughout the season. At the beginning of the 

season the adaptiveopt model performs worse than the static model, performing similar or 

better within 10 weeks. The 1 week ahead target shows the adaptiveopt model outperforming 

the static model by week 10. The remaining targets show the adaptiveopt model performing 

similar to the static.
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TABLE 1

Description of the 5 ensemble models analyzed.

Model Description

Equally-weighted (EW) Assign a weight of 1/21 to every component model

Static with no regularization (Static) Weights are trained on all previous seasons and fixed throughout the target season

Adaptive with no regularization 
(Adaptivenon)

This ensemble begins with no training data and a 0% prior regularization.
Weights are trained each week within the target season.

Adaptive with optimal regularization 
(Adaptiveopt)

This ensemble begins with no training data and an optimal prior calculated from the 2010/2011 
season. Weights are trained each week within season.

Adaptive with over regularization 
(Adaptiveover)

This ensemble begins with no training data and a prior greater than the optimal. Weights are trained 
each week within season.
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